3.53 \(\int \frac{\sqrt{2-3 x} (7+5 x)}{\sqrt{-5+2 x} \sqrt{1+4 x}} \, dx\)

Optimal. Leaf size=131 \[ -\frac{179 \sqrt{\frac{11}{6}} \sqrt{5-2 x} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{11}} \sqrt{4 x+1}\right ),\frac{1}{3}\right )}{12 \sqrt{2 x-5}}+\frac{5}{12} \sqrt{2-3 x} \sqrt{2 x-5} \sqrt{4 x+1}+\frac{241 \sqrt{11} \sqrt{2 x-5} E\left (\sin ^{-1}\left (\frac{2 \sqrt{2-3 x}}{\sqrt{11}}\right )|-\frac{1}{2}\right )}{36 \sqrt{5-2 x}} \]

[Out]

(5*Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x])/12 + (241*Sqrt[11]*Sqrt[-5 + 2*x]*EllipticE[ArcSin[(2*Sqrt[2 -
3*x])/Sqrt[11]], -1/2])/(36*Sqrt[5 - 2*x]) - (179*Sqrt[11/6]*Sqrt[5 - 2*x]*EllipticF[ArcSin[Sqrt[3/11]*Sqrt[1
+ 4*x]], 1/3])/(12*Sqrt[-5 + 2*x])

________________________________________________________________________________________

Rubi [A]  time = 0.0510921, antiderivative size = 131, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {154, 158, 114, 113, 121, 119} \[ \frac{5}{12} \sqrt{2-3 x} \sqrt{2 x-5} \sqrt{4 x+1}-\frac{179 \sqrt{\frac{11}{6}} \sqrt{5-2 x} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{11}} \sqrt{4 x+1}\right )|\frac{1}{3}\right )}{12 \sqrt{2 x-5}}+\frac{241 \sqrt{11} \sqrt{2 x-5} E\left (\sin ^{-1}\left (\frac{2 \sqrt{2-3 x}}{\sqrt{11}}\right )|-\frac{1}{2}\right )}{36 \sqrt{5-2 x}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[2 - 3*x]*(7 + 5*x))/(Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]),x]

[Out]

(5*Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x])/12 + (241*Sqrt[11]*Sqrt[-5 + 2*x]*EllipticE[ArcSin[(2*Sqrt[2 -
3*x])/Sqrt[11]], -1/2])/(36*Sqrt[5 - 2*x]) - (179*Sqrt[11/6]*Sqrt[5 - 2*x]*EllipticF[ArcSin[Sqrt[3/11]*Sqrt[1
+ 4*x]], 1/3])/(12*Sqrt[-5 + 2*x])

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 114

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[e + f*
x]*Sqrt[(b*(c + d*x))/(b*c - a*d)])/(Sqrt[c + d*x]*Sqrt[(b*(e + f*x))/(b*e - a*f)]), Int[Sqrt[(b*e)/(b*e - a*f
) + (b*f*x)/(b*e - a*f)]/(Sqrt[a + b*x]*Sqrt[(b*c)/(b*c - a*d) + (b*d*x)/(b*c - a*d)]), x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0]) &&  !LtQ[-((b*c - a*d)/d), 0]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 121

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[Sqrt[(b*(c
+ d*x))/(b*c - a*d)]/Sqrt[c + d*x], Int[1/(Sqrt[a + b*x]*Sqrt[(b*c)/(b*c - a*d) + (b*d*x)/(b*c - a*d)]*Sqrt[e
+ f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !GtQ[(b*c - a*d)/b, 0] && SimplerQ[a + b*x, c + d*x] && Si
mplerQ[a + b*x, e + f*x]

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{\sqrt{2-3 x} (7+5 x)}{\sqrt{-5+2 x} \sqrt{1+4 x}} \, dx &=\frac{5}{12} \sqrt{2-3 x} \sqrt{-5+2 x} \sqrt{1+4 x}+\frac{1}{12} \int \frac{\frac{441}{2}-482 x}{\sqrt{2-3 x} \sqrt{-5+2 x} \sqrt{1+4 x}} \, dx\\ &=\frac{5}{12} \sqrt{2-3 x} \sqrt{-5+2 x} \sqrt{1+4 x}-\frac{241}{12} \int \frac{\sqrt{-5+2 x}}{\sqrt{2-3 x} \sqrt{1+4 x}} \, dx-\frac{1969}{24} \int \frac{1}{\sqrt{2-3 x} \sqrt{-5+2 x} \sqrt{1+4 x}} \, dx\\ &=\frac{5}{12} \sqrt{2-3 x} \sqrt{-5+2 x} \sqrt{1+4 x}-\frac{\left (179 \sqrt{\frac{11}{2}} \sqrt{5-2 x}\right ) \int \frac{1}{\sqrt{2-3 x} \sqrt{\frac{10}{11}-\frac{4 x}{11}} \sqrt{1+4 x}} \, dx}{12 \sqrt{-5+2 x}}-\frac{\left (241 \sqrt{-5+2 x}\right ) \int \frac{\sqrt{\frac{15}{11}-\frac{6 x}{11}}}{\sqrt{2-3 x} \sqrt{\frac{3}{11}+\frac{12 x}{11}}} \, dx}{12 \sqrt{5-2 x}}\\ &=\frac{5}{12} \sqrt{2-3 x} \sqrt{-5+2 x} \sqrt{1+4 x}+\frac{241 \sqrt{11} \sqrt{-5+2 x} E\left (\sin ^{-1}\left (\frac{2 \sqrt{2-3 x}}{\sqrt{11}}\right )|-\frac{1}{2}\right )}{36 \sqrt{5-2 x}}-\frac{179 \sqrt{\frac{11}{6}} \sqrt{5-2 x} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{11}} \sqrt{1+4 x}\right )|\frac{1}{3}\right )}{12 \sqrt{-5+2 x}}\\ \end{align*}

Mathematica [A]  time = 0.183481, size = 115, normalized size = 0.88 \[ \frac{-179 \sqrt{66} \sqrt{5-2 x} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{11}} \sqrt{4 x+1}\right ),\frac{1}{3}\right )+30 \sqrt{2-3 x} \sqrt{4 x+1} (2 x-5)+241 \sqrt{66} \sqrt{5-2 x} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{11}} \sqrt{4 x+1}\right )|\frac{1}{3}\right )}{72 \sqrt{2 x-5}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[2 - 3*x]*(7 + 5*x))/(Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]),x]

[Out]

(30*Sqrt[2 - 3*x]*(-5 + 2*x)*Sqrt[1 + 4*x] + 241*Sqrt[66]*Sqrt[5 - 2*x]*EllipticE[ArcSin[Sqrt[3/11]*Sqrt[1 + 4
*x]], 1/3] - 179*Sqrt[66]*Sqrt[5 - 2*x]*EllipticF[ArcSin[Sqrt[3/11]*Sqrt[1 + 4*x]], 1/3])/(72*Sqrt[-5 + 2*x])

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 140, normalized size = 1.1 \begin{align*} -{\frac{1}{1728\,{x}^{3}-5040\,{x}^{2}+1512\,x+720}\sqrt{2-3\,x}\sqrt{2\,x-5}\sqrt{4\,x+1} \left ( 537\,\sqrt{11}\sqrt{2-3\,x}\sqrt{5-2\,x}\sqrt{4\,x+1}{\it EllipticF} \left ( 2/11\,\sqrt{22-33\,x},i/2\sqrt{2} \right ) -482\,\sqrt{11}\sqrt{2-3\,x}\sqrt{5-2\,x}\sqrt{4\,x+1}{\it EllipticE} \left ( 2/11\,\sqrt{22-33\,x},i/2\sqrt{2} \right ) -720\,{x}^{3}+2100\,{x}^{2}-630\,x-300 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((7+5*x)*(2-3*x)^(1/2)/(2*x-5)^(1/2)/(4*x+1)^(1/2),x)

[Out]

-1/72*(2-3*x)^(1/2)*(2*x-5)^(1/2)*(4*x+1)^(1/2)*(537*11^(1/2)*(2-3*x)^(1/2)*(5-2*x)^(1/2)*(4*x+1)^(1/2)*Ellipt
icF(2/11*(22-33*x)^(1/2),1/2*I*2^(1/2))-482*11^(1/2)*(2-3*x)^(1/2)*(5-2*x)^(1/2)*(4*x+1)^(1/2)*EllipticE(2/11*
(22-33*x)^(1/2),1/2*I*2^(1/2))-720*x^3+2100*x^2-630*x-300)/(24*x^3-70*x^2+21*x+10)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (5 \, x + 7\right )} \sqrt{-3 \, x + 2}}{\sqrt{4 \, x + 1} \sqrt{2 \, x - 5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((7+5*x)*(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((5*x + 7)*sqrt(-3*x + 2)/(sqrt(4*x + 1)*sqrt(2*x - 5)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (5 \, x + 7\right )} \sqrt{4 \, x + 1} \sqrt{2 \, x - 5} \sqrt{-3 \, x + 2}}{8 \, x^{2} - 18 \, x - 5}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((7+5*x)*(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="fricas")

[Out]

integral((5*x + 7)*sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)/(8*x^2 - 18*x - 5), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{2 - 3 x} \left (5 x + 7\right )}{\sqrt{2 x - 5} \sqrt{4 x + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((7+5*x)*(2-3*x)**(1/2)/(-5+2*x)**(1/2)/(1+4*x)**(1/2),x)

[Out]

Integral(sqrt(2 - 3*x)*(5*x + 7)/(sqrt(2*x - 5)*sqrt(4*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (5 \, x + 7\right )} \sqrt{-3 \, x + 2}}{\sqrt{4 \, x + 1} \sqrt{2 \, x - 5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((7+5*x)*(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm="giac")

[Out]

integrate((5*x + 7)*sqrt(-3*x + 2)/(sqrt(4*x + 1)*sqrt(2*x - 5)), x)